Empowering Farmers for Sustainable Food Security: Insights from Rural Iran

Paper first received: 04 March 2024; Accepted: 25 October 2025; Published in final form: 23 November 2025 https://doi.org/10.48416/ijsaf.v31i2.606

Naser SHAFIEISABET¹ and Neginsadat MIRVAHEDI¹

Abstract

This study investigates the role of structural empowerment in promoting sustainable food security in rural south-eastern Tehran, Iran. Despite its agricultural potential, the region faces persistent challenges due to weak empowerment structures. While most previous studies have focused on psychological or gender-based empowerment, this research applies Kanter's structural empowerment theory—initially developed for formal organisations—to rural agriculture. It examines how access to information, resources, power, and support influences food security across environmental-ecological, socio-economic, political-cultural, and infrastructural dimensions. Data from 400 farmers across 37 villages were analysed using multiple linear regression and structural equation modelling (SEM). The findings reveal significant positive impacts of structural empowerment on sustainable food security. These impacts arise from awareness, knowledge, and skills, along with training, association, and both formal and informal power. In contrast, institutionalism exhibited no statistically significant effect, highlighting the region's formal structures' inefficiency. These results underscore the importance of social networks, informal institutions, and collective agency in enhancing farmers' resilience and decision-making capacity. The study advocates shifting from top-down, technocratic policies to participatory, bottom-up empowerment strategies and recommends institutional reform, education and strengthening of local associations as key steps toward improving food system sustainability. This research offers a novel contribution by localising structural empowerment theory within an underexplored rural setting, providing valuable insights for policymakers, practitioners, and scholars in agricultural development. It calls for multidimensional policy interventions that address both individual and structural factors. Future studies should investigate gender disparities, conduct cross-regional comparisons, and refine empowerment metrics to enhance the applicability and relevance of findings across contexts.

Corresponding author: Naser Shafieisabet, n_shafiei@sbu.ac.ir

Biographical notes

Naser Shafieisabet is an Associate Professor in the Department of Human Geography and Spatial Planning, Faculty of Earth Sciences at the Shahid Beheshti University, Tehran, Iran

Neginsadat Mirvahedi is a graduate of Geography and Rural Planning from the Department of Human Geography and Spatial Planning, Faculty of Earth Sciences at Shahid Beheshti University, Tehran, Iran.

Department of Human Geography and Spatial Planning, Faculty of Earth Sciences, Shahid Beheshti University, Tehran, Iran. Post Code: 1983969411.

Introduction

Sustainable food security is a critical and expanding global concern, particularly in developing countries where agriculture is integral to community livelihoods (Fanzo et al., 2024; Galeana-Pizaña et al., 2021; Yahaya et al., 2018). These countries face multifaceted challenges that hinder their capacity to achieve food security, including climate change, resource depletion, soil erosion, water scarcity, poverty, economic inequality, rapid population growth, limited access to technology, institutional barriers, and price volatility (Aziz et al., 2020; Balasundram et al., 2023; Onyeaka et al., 2024; Sekaran et al., 2021). These challenges are often interrelated and undermine the ability to provide sufficient, nutritious, and accessible food for all in the long term (Habiba et al., 2015). In this context, farmers play a crucial role in agricultural production and ensuring food security. Their responsibilities span several dimensions of sustainable food security, including environmental, socio-economic, political, and infrastructural aspects in rural and agricultural areas (Sibhatu and Qaim, 2017). Consequently, empowering farmers, particularly within the second Sustainable Development Goal framework, has become a focal point in addressing these challenges (Pérez-Escamilla, 2017; Yahaya et al., 2018). Governments have increasingly adopted the farmer empowerment approach to address the complex and multifaceted goals of rural development and food security (Abdolmaleky, 2012; Pérez-Escamilla, 2017; Shafieisabet and Mirvahedi, 2021). Existing research on farmer empowerment, particularly for women in the context of food security, has primarily focused on individual, collective, and psychological empowerment (Aziz et al., 2020; Galiè et al., 2019; Sarker et al., 2024; Tamako et al., 2022). However, the structural empowerment of farmers remains underexplored despite its critical relevance to sustainable food security. Farmers often operate within unequal socio-economic structures that limit their access to resources, institutional support, education, information, power, and opportunities for decision-making (Kehinde et al., 2021; Tambi and Lum, 2020; Viana et al., 2022; Sehat Tan and Mailena, 2021). Structural empowerment, which facilitates equitable participation in decisionmaking, production, and distribution processes, is crucial in addressing these challenges (Orgambídez et al., 2024; Ozbozkurt et al., 2021).

Structural empowerment involves policies, practices, and frameworks that increase individual autonomy in decision-making and influence over personal and collective affairs, promoting a horizontal decentralisation of power from formal structures to subordinates (Monje-Amor et al., 2020; Ozbozkurt et al., 2021). Such empowerment is pivotal in creating an environment where farmers can make informed decisions, assume responsibility for their work, and actively address food security challenges (Shuhaimi et al., 2025). Empowered farmers leverage the opportunities available within their environment and gain the necessary power to pursue their professional objectives (Dan et al., 2018). Although Kanter's (1977) structural empowerment theory was initially developed for formal organisations, its core principles—access to information, resources, support, and power—are equally applicable to rural and agricultural contexts (van den Berg et al., 2022; Walters et al., 2021). Despite differences in formality, rural communities share characteristics such as local power dynamics, indigenous institutions, and inconsistent access to resources. Reinterpreting this theory within agricultural and rural contexts offers valuable insights into the structural conditions affecting farmers and their capacity to contribute to sustainable food security.

This study applies a structural empowerment approach to assess the influence of key empowerment indicators on sustainable food security in a rural region of Iran. The region under investigation comprises villages in the southern Tehran metropolitan area, which, despite possessing fertile soil, suitable agricultural land, and a strategic location vital for national food security, faces significant challenges in food production and supply. These challenges are primarily attributed to ineffective structures that govern the empowerment of farmers, which fail to create a supportive environment for their development and, in many cases, act as barriers to progress.

Empowerment initiatives in the region have historically been inconsistent, top-down, and poorly coordinated among the responsible institutions. Consequently, these efforts have had limited success in improving agricultural production and enhancing sustainable food security. Farmers in this area have been deprived

of effective empowerment structures providing educational opportunities, skills development, access to resources, formal and informal support, practical information, and active participation. As a result, many farmers exhibit "stuck behavior," characterised by reluctance to change, limited production, diminished engagement with food security organisations, and resistance to adopting new practices. This behavior poses a potential long-term threat to sustainable food security.

The primary objective of this study is to examine the impact of various structural empowerment indicators on key components of sustainable food security. By providing valuable insights for policymakers, planners, and institutions engaged in rural and agricultural development, the study aims to strengthen empowerment structures, improve resource access, and foster active farmer participation in promoting sustainable food security and enhancing social welfare in rural communities.

Theoretical Framework

Sustainable food security, a critical component of sustainable development, ensures that all individuals have consistent access to sufficient, safe, and nutritious food without compromising the ability of future generations to meet their food needs (Habiba et al., 2015; Nwachukwu et al., 2024). This concept extends beyond providing basic calories and nutrients, emphasising economic accessibility, environmental sustainability, and the optimal use of resources to foster sustainable employment and meaningful community participation. It also prioritises the long-term, sustainable provision of food, which prevents the degradation of natural and agricultural resources (Oghuvbu, 2024). In examining the classical dimensions of food security—availability, access, utilisation, and stability—a more comprehensive, forward-thinking framework is necessary. These dimensions must, without question, be integrated into sustainable food security (HLPE, 2020; Schling and Pazos, 2024). Sustainable food security encompasses environmental-ecological, socio-economic, political-cultural, and infrastructural dimensions, all of which are critical to food production, distribution, and consumption (Hasdiansyah et al., 2021; Pérez-Escamilla, 2017; Reinbott, 2019; Shafieisabet and Mirvahedi, 2021; Shafieisabet and Mirvahedi, 2022). As a result, the classical food security indicators must be reconsidered about their interconnections with the broader dimensions of sustainable development (Berry et al., 2015; Clapp et al., 2022; Pérez-Escamilla, 2017).

A key element of this framework is the structural empowerment of farmers, who are central to sustainable food production, distribution, and consumption. Without addressing the institutional and social barriers that farmers face and enhancing their structural position, the overarching goals of sustainable food security will remain unattainable (Blesh et al., 2023; Touch et al., 2024). Structural empowerment is a focused effort to dismantle unjust and oppressive social, economic, and political systems that often restrict equitable access to resources and opportunities (Aziz et al., 2022; Kanter, 2008). This process offers marginalised groups, such as farmers, crucial to agricultural production and sustainable food security the chance to drive changes that enable more equitable access to resources (Lecoutere et al., 2024). The objective is to empower farmers to influence social and economic decision-making processes, advocate for their rights, and ensure continuous, sufficient, and healthy access to nutritious food that meets community needs (Oghuvbu, 2024). As a process, the structural empowerment of farmers enhances their ability to make informed choices and influence collective decisions, ultimately achieving desired actions and outcomes (Abdolmaleky, 2012). The theoretical foundations of this concept are grounded in Kanter's structural empowerment theory, which posits that social structures, rather than individual predispositions, significantly shape attitudes and behaviors (Kanter, 2008). Kanter contends that structural empowerment occurs when individuals have access to "information, support, resources, learning and growth opportunities, and both formal and informal power," creating an environment where they can effectively confront challenges (Kanter, 1977; Ta'an, 2024). The benefits of structural empowerment manifest in improved attitudes and progress toward achieving broader objectives (Al-Hammouri et al., 2021). In the context of sustainable food security, structural empowerment is realised when farmers have access to the necessary "information, support, resources, opportunities for learning and growth, skill development, challenging responsibilities, and both formal and informal power" to enhance the key indicators of food security (Moura et al., 2024).

Access to learning and training opportunities is a fundamental aspect of structural empowerment for farmers, enhancing productivity and improving production processes while offering significant potential for preserving natural resources, reducing environmental damage, and fostering the ecological sustainability of food systems. Education equips farmers to manage resources responsibly and to contribute effectively to the four key food security indicators—access, availability, utilisation, and stability—within the environmental-ecological dimension of sustainable food security (Essilfie et al., 2021; Lufuke et al., 2023; Reilly et al., 2022; Yahaya et al., 2018). Furthermore, well-designed educational programs can strengthen production and distribution infrastructure when structural empowerment is fully realised. Practical training can increase production and improve food access through improved knowledge of technology and machinery (Ruzzante et al., 2021; Wonde et al., 2022). Specialised training in storage, processing, distribution, and transportation can further reinforce food security's consumption and infrastructure components (Raidimi and Kabiti, 2019; Vogliano et al., 2021). Education is also essential for bridging the knowledge gap, particularly regarding the relationship between biodiversity and farm management practices. By fostering a more profound understanding, farmers are better positioned to make informed decisions that support sustainable production practices (Elisante et al., 2019; Ezzeddin et al., 2024). Research conducted in South Africa has shown that training smallholder farmers enhances their decision-making abilities, leading to more scientifically informed and effective practices that contribute to sustainable food security (Raidimi and Kabiti, 2019).

Another essential aspect of structural empowerment is developing knowledge, skills, assets, and capacities within the farming community. By addressing inequalities and creating opportunities for learning, networking, and organising, these initiatives can mobilise the necessary capacities to achieve sustainable food security goals (Sharaunga et al., 2015; Zikargae et al., 2022). Increasing farmers' awareness and skills—particularly through modern training on sustainable agricultural practices—empowers them to make informed decisions, exercise professional independence, and use natural resources like water and soil responsibly (Abdul-Majid et al., 2024; Asitik and Abu, 2020; Finger, 2023). This knowledge promotes adopting environmentally friendly practices but contributes to ecosystem preservation, production diversity, and optimal resource consumption (Heinze et al., 2022; O'Connor et al., 2025). Structural empowerment enables farmers to make informed choices and engage actively in food production management and environmental processes, thereby strengthening sustainable food security's ecological and environmental dimensions (Nyathi et al., 2022; Prain et al., 2020). From this perspective, awareness encompasses farmers' active access to information related to responsible institutions, agricultural policies, and decision-making processes, combining the ability to understand, analysed, and utilise informational resources (Forney, 2021; Wann et al., 2024). Enhancing farmers' awareness—through timely information about markets, new technologies, training schedules, and the sharing of successful practices—can play a significant role in transitioning from non-productive to sustainable and efficient agricultural systems (Lei and Yang, 2024; Rossi et al., 2023; Zscheischler et al., 2022). This increased awareness improves the stability of natural resource use, reduces environmental pollutants, enhances safety and health standards, and ensures the sustainable management of land, ultimately bolstering the environmental stability of sustainable food security (Bernini and Galli, 2024; Damanik et al., 2021; Dessart et al., 2019; Galiè et al., 2019). Moreover, increasing farmers' capacity to acquire specialised agricultural knowledge not only improves productivity and income but also plays a pivotal role in reducing poverty and strengthening food security within the socio-economic dimension (Abdul-Majid et al., 2024; Pawlak and Kołodziejczak, 2020). For instance, in Nigeria, timely and relevant information has been identified as crucial in increasing farmers' capacity to produce crops such as maize, contributing to sustainable food security (Adewale, 2012).

Access to resources is a fundamental component of structural empowerment for farmers. It is realised when farmers can equitably and sustainably access essential resources required for production activities, including natural resources such as water, soil, and suitable land, as well as financial resources (both formal

and informal), government and private sector support, local institutions, and marketing and transportation networks (Conceição et al., 2016; Sun et al., 2025; Wei et al., 2021). In practice, access to resources reflects institutional power structures—who controls access, how resources are accessed, and under what conditions. These factors directly influence farmers' ability to ensure food security, particularly regarding socio-economic factors. For example, access to credit and emergency support in times of crisis can facilitate investments in productive innovations and enhance farmers' resilience to economic and climatic shocks (Bain et al., 2020; Barak et al., 2024; Dwomoh et al., 2023; Tesafa et al., 2025). In Indonesia, strengthening farmers' access to production inputs and involving them in decision-making regarding equipment procurement have been recognised as strategies to improve food stability and reinforce structural empowerment (Azizah et al., 2014). Similarly, in sub-Saharan Africa, policies that improve access to input supply infrastructure, agricultural tools, and farm technologies are linked directly to advancing sustainable food security (Conceição et al., 2016). Access to financial resources and control over income further reduce food insecurity (Ashagidigbi et al., 2022; Mataka et al., 2023).

Institutional support is another critical dimension of structural empowerment, encompassing various forms of direct and indirect assistance from government institutions, rural development organisations, and other agricultural sector stakeholders (Murugani and Thamaga-Chitja, 2019; Sarma et al., 2024; Sun et al., 2025). Such support includes providing accurate, timely information, facilitating access to markets, storage facilities, transportation systems, seed supply, feed, fertilisers, and credit, and familiarising farmers with government regulations and policies. These elements are essential for enhancing agricultural productivity and sustainability. However, many small-scale farmers face significant barriers to accessing such support, which disrupts resource utilisation, limits market entry, and undermines food security at both local and national levels (Finger, 2023; Galiè et al., 2019). This reflects structural exclusion and institutional inequality, marginalising farmers within the agricultural value chain. In this context, agricultural cooperatives, local networks, non-governmental organisations (NGOs), private companies, and the government are crucial support links in the supply chain. These entities can enhance farmers' capacity for action and their sense of empowerment by providing technical advice, facilitating access to resources, and offering support during financial and climatic crises (Christian et al., 2024; Kaya and Altınkurt, 2018; Manyise and Dentoni, 2021). Specifically, government policy support, through incentive programs for agricultural equipment upgrades, subsidy allocation, and infrastructure development, is essential to strengthening the "access" and "stability" dimensions within the political-cultural aspect of sustainable food security (Barbosa, 2024; Wu et al., 2025).

Formal and informal power are key elements of Kanter's structural empowerment theory, further expanded by Chandler and Laschinger, highlighting the importance of access to opportunities and power structures (Al-Hammouri et al., 2021). As previously discussed, the "opportunity structure" enables farmers to advance, develop their skills and knowledge, and engage in decision-making and problem-solving processes. Farmers with better access to resources, information, and institutional support tend to be more active, creative, and motivated in addressing agricultural challenges. In contrast, farmers who lack these opportunities often experience reduced productivity and diminished motivation (Doss et al., 2018; Kabeer, 1999). Power relations are also central to this discussion. The concept of "power over" refers to the dominance of certain actors within institutional systems, controlling resources, decision-making, and policy directions, which can result in the exclusion and marginalisation of resource-poor farmers. Conversely, "power with" promotes group participation, collaborative learning, and cooperative relationships among farmers, fostering a space to redistribute power at the local level (Eidt et al., 2020; Rowlands, 1995). From Kanter's perspective, structural power is an individual's ability to mobilise resources, information, and institutional support to complete tasks and achieve goals. This power is derived from three primary sources: access to resources, support, and information, all of which are facilitated through both formal and informal systems (Ramos et al., 2019; Zamiri and Esmaeili, 2024). Formal power is typically rooted in the farmer's social and institutional position within the rural structure and is closely linked to visibility, flexibility, adaptability, and creativity in decision-making (Dessart et al., 2019; Pang et al., 2025). Farmers encouraged and rewarded for innovation in areas such as

planting, cultivation, harvesting, animal husbandry, horticulture, or aquaculture are more likely to engage in educational programs, agricultural problem-solving groups, and collective decision-making processes (Eidt et al., 2020). Active participation strengthens their sense of autonomy and social agency, promotes the formation of "power with" at the local level, and expands experiences that enhance collective capacities to tackle food security challenges (Setyadiharja et al., 2020; Zerafati-Shoae et al., 2020).

Both formal and informal power play facilitative roles in achieving the political, social, and economic dimensions of sustainable food security (Dhal and Kar, 2024; Habtewold and Heshmati, 2023; Hiywotu, 2025; van den Berg et al., 2022). Informal power, within the context of structural empowerment, refers to the social relationships, local networks, and support systems that arise from informal interactions between farmers and other social actors, both within and outside the rural community (Davies et al., 2011; Kanter, 1977; Laschinger et al., 2004). Unlike formal power, which originates from institutional roles, informal power is based on social capital, horizontal communication, and trust between individuals and groups. It is crucial in enabling informal access to resources, information, and decision-making opportunities. The development and reinforcement of social networks and communication channels for the supply, exchange, and marketing of agricultural products particularly through cooperatives, local organisations, village councils, and producer groups—play a critical role in facilitating market access and improving resource management (Clement et al., 2019; Hua and Brown, 2024; Liu et al., 2022; Valentinov and Iliopoulos, 2021). These local institutions promote the exchange of knowledge and experience among farmers and support the sustainability of production systems by establishing mechanisms for conflict resolution, enhancing crisis resilience, and increasing social participation (Finger, 2023; Uphoff, 1992). Collaboration among farmers, governmental bodies, and technical experts—especially in areas such as drought management, pest control, and climate change adaptation—is essential for maintaining the resilience of agricultural systems. Such collaboration helps prevent declines in production and income during crises (Hussein et al., 2024; Thompson et al., 2023). Active farmer participation in educational initiatives, the integration of Indigenous knowledge, and the combined use of traditional and modern technologies further enhance productivity, promote environmental sustainability, and strengthen food security at both local and national levels (Adefila et al., 2024;WFF, 2024).

Institutionalism, another key component of structural empowerment, recognises institutions—whether governmental, non-governmental, or community-based—not merely as policy implementers but as facilitators of the social, economic, and knowledge systems in which farmers operate (Farah and Amara, 2025; Jemaneh and Shibeshi, 2023; Putsenteil et al., 2020). By shaping formal and informal processes, institutions play a pivotal role in redistributing power, facilitating equitable access to resources, and supporting the generation and application of indigenous knowledge. Organisations such as farmers' associations, agricultural unions, and NGOs enhance both individual and collective capacities, enabling economic diversification and strengthening rural resilience to climatic, economic, and biological shocks (Aziz et al., 2021; Junquera et al., 2022; Tamako et al., 2022). Moreover, institutions contribute by investing in educational infrastructure, promoting nutritional awareness, and institutionalising social learning, creating the foundation for innovation adoption, sustainable resource management, and adaptation to evolving challenges (Hulland, 1999; Silva-Jean and Kneipp, 2024). Institutional support for smallholder farmers—through land reform, equitable resource allocation, and government-backed tenure security—enhances psychological stability, incentivises investment, and encourages responsible resource use. These institutional mechanisms not only promote coherent and sustainable food production but also contribute to social sustainability and structural cohesion in rural communities, aligning with the economic, social, and political dimensions of sustainable food security (Abab et al., 2023; Kehinde et al., 2021; Sun et al., 2025).

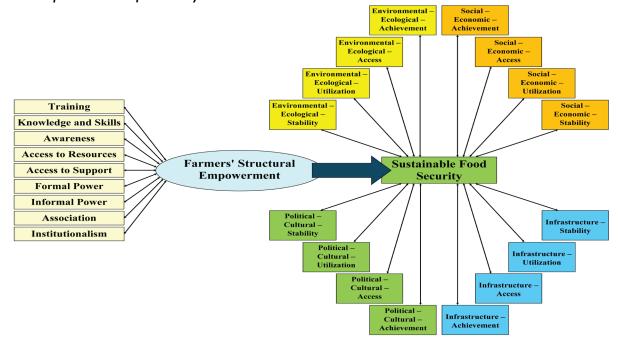
The primary objective of this research is to investigate the relationship between farmers' structural empowerment and the four dimensions of sustainable food security: availability, access, utilisation, and stability. This study addresses a critical theoretical and empirical gap by proposing a novel analytical framework grounded in structural empowerment. This area remains underexplored in the context of sustainable

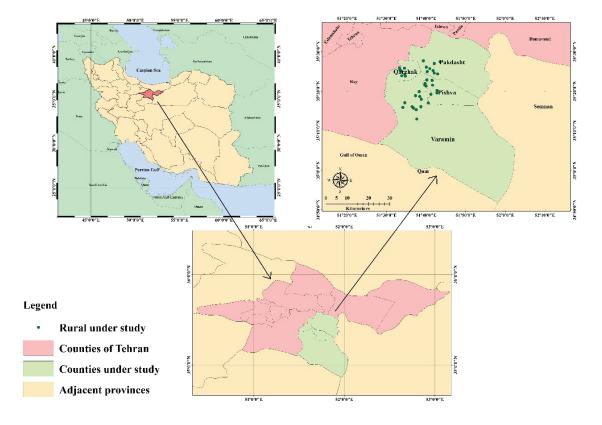
food security, particularly within rural agricultural systems in developing countries. Previous research on farmer empowerment, especially among women, has predominantly drawn upon theories such as Kabeer's empowerment framework, Sen's capability approach, psychological empowerment theories (e.g., Spreitzer), feminist and power theories (e.g., Foucault), Freire's critical consciousness theory, and integrative models like those proposed by Malapit and Quisumbing. While these approaches offer valuable insights, they emphasise internal and individualistic dimensions of empowerment—such as agency, self-efficacy, and autonomy—while paying comparatively less attention to structural, institutional, and externally modifiable factors, especially in rural agricultural contexts. In contrast, this study is anchored in Kanter's (1977) structural empowerment theory, which uniquely conceptualises empowerment as a function of access to four core components: resources, information, support, and formal and informal power. This theory offers tangible, measurable, and intervenable indicators suitable for analyzing the structural dimensions of empowerment within agricultural systems. Despite its relevance, Kanter's framework has been largely overlooked in farmer empowerment and sustainable food security research. The Iranian farming sector—particularly in the selected study areaexemplifies the consequences of limited structural empowerment. Farmers face significant institutional constraints that hinder their resilience to crises and compromise the long-term realisation of sustainable food security. By applying Kanter's theoretical lens, this study aims to develop an integrated theoretical and empirical model to support analysis, intervention, and policy development in food security from the perspective of farmer empowerment.

Based on this theoretical foundation and the reviewed literature, the following hypotheses are proposed for empirical testing:

- **HI:** Training of farmers has a positive impact on sustainable food security.
- **H2:** The knowledge and skills of farmers have a positive impact on sustainable food security.
- **H3:** Farmer awareness has a positive impact on sustainable food security.
- **H4:** Access to resources by farmers has a positive impact on sustainable food security.
- **H5:** Access to support for farmers positively impacts sustainable food security.
- **H6:** The formal power of farmers has a positive impact on sustainable food security.
- **H7:** The informal power of farmers positively impacts sustainable food security.
- **H8:** Farmer in association has a positive impact on sustainable food security.
- **H9:** Institutionalism for farmers has a positive impact on sustainable food security.

Figure 1. Conceptual model of the study




Figure I presents a comprehensive and systematic framework illustrating the relationships between the independent and dependent variables. The framework analyses the role of structural empowerment indicators in enabling farmers to achieve sustainable food security.

Methodology

Study Area

The study focuses on rural areas in south-eastern Tehran province, specifically the counties of Pakdasht, Qarchak, Pishva, and Varamin (Figure 2). These areas were chosen for their distinct environmental, economic, and social characteristics. South-eastern Tehran is a significant agricultural hub with fertile soil, adequate water resources, and considerable agricultural and livestock production potential. The region's flat terrain and extensive arable land further enhance its agricultural development prospects. As a key contributor to provincial and national food security, local farmers are central to food production. However, these farmers face considerable challenges, including limited access to resources, modern technologies, specialised training, financial services, and markets—factors essential for structural empowerment. Given the region's fragile climatic, infrastructural, and economic conditions, addressing these issues is critical to preventing further food production and nutritional crises. Examining these challenges will offer valuable insights into the relationship between structural empowerment and sustainable food security. Thus, this region provides a pertinent case for exploring agricultural development and policies to support south-eastern Tehran's rural areas.

Figure 2. Location of the study area

Data

The statistical population of this study comprises 163 active agricultural villages within the study area. Following the Central Limit Theorem and the requirement for a minimum sample size of 30, 37 villages were randomly selected. Based on data from 2016 and 2018, the selected villages included 3,127 farming households, forming the statistical sample. Using Cochran's formula, the required sample size for the survey was estimated at 342 individuals, assuming a 95% confidence level, a 5% margin of error, and an estimated variance of 0.25. In

order to improve precision and guarantee sufficient representation, especially in villages with fewer than 10 respondents, the final number of participants was changed to 400 individuals.

Indicators and Measurement Tools

A comprehensive review of the literature, including extensive screening of reputable databases with specialised keywords, revealed that most studies on empowerment in food security have primarily focused on women's empowerment. These studies predominantly rely on the Women's Empowerment in Agriculture Index (WEAI), which provides a set of dimensions and metrics for evaluating women's empowerment. In addition, other studies have explored various empowerment dimensions, including economic, social, agricultural, civil, and political aspects. The measurement tools used in the field of food security include the Household Food Insecurity Access Scale (HFIAS), Household Dietary Diversity Score (HDDS), Food Consumption Score (FCS), and the Food Insecurity Experience Scale (FIES), all of which are globally recognised in this domain.

This study introduces an innovative approach by examining the structural empowerment of farmers for sustainable food security in rural areas. We developed indicators of structural empowerment based on existing literature and prior research (see Table 1). Additionally, in line with the emphasis on sustainability in food security literature, we established sustainability dimensions—environmental-ecological, socio-economic, political-cultural, and infrastructural—aligned with the classical food security dimensions of access, availability, utilisation, and stability (see Table 2). This multidimensional approach integrates food security with sustainability, offering an innovative, interdisciplinary perspective that has gained traction in recent research on rural development, food policy, and resilience assessment.

To collect data, we designed a researcher-developed questionnaire based on the standard Conditions of Work Effectiveness Questionnaire (CWEQ), initially designed by Kanter (1977) and operationalised by Laschinger (1986). Chandler et al. later refined this tool into the CWEQ-I, with subsequent versions, including the CWEQ-II, further enhancing its scope. Although initially designed for formal work environments, the CWEQ was adapted for this study to better reflect farmers' occupational and environmental conditions, given the differences between these settings and formal work environments.

Since no fully standardised international tool exists for measuring sustainable food security, and existing instruments did not fully capture this study's specific characteristics, we developed our questionnaire based on theoretical foundations and relevant variables. We meticulously assessed its validity and reliability. Before administering the questionnaire in the study area, we evaluated its face and content validity. To assess face and content validity, we solicited feedback from experts in the field, including university faculty members and researchers from top Iranian institutions such as the University of Tehran, Kharazmi University, Shahid Beheshti University, and Tarbiat Modares University. Additionally, experts from the Ministry of Interior, municipalities, rural development offices, the Ministry of Jihad Agriculture, and the Office of Rural Development at the Presidency provided valuable insights. The lead author, with over 26 years of field research experience in rural areas around Tehran, also contributed to this review. The purpose of this phase was to ensure clarity, comprehensibility, logical coherence, and relevance of the questions.

Further, we sought feedback from a small group of farmers to assess the questions' clarity, conceptual accuracy, and relevance, ensuring alignment with the research topic. For content validity, specialists were asked to evaluate each question for accuracy and comprehensiveness, ensuring all essential dimensions of the research topic were addressed. The reliability of the questionnaire was confirmed through Cronbach's alpha, with results above 0.7 indicating acceptable internal consistency (see Table 7). After careful refinement based on expert feedback, the questionnaire's final draft was deemed reliable and valid.

Table 1. Latent and Observable Variables of Farmers' Structural Empowerment

Latent Variables	Observable Variables	References	
	Educational Programs for Enhancing Agricultural Product Production	Yahaya et al. (2018); Ruzzante et al.	AQI
Training	High-Quality Specialised Training	(2021); Reilly et al. (2022); Ezzeddin et al. (2023); Raidimi	AQ2
	Career Advancement Opportunities, Decision- Making Power, and Greater Independence for Farmers after Training	and Kabiti (2019); Elisante et al. (2019); Wonde et al. (2022); Vogliano et al. (2021)	AQ3
	Optimal Utilization of Knowledge and Skills in Agriculture	Abdul-Majid et al. (2024); Finger (2023);	CQI
Knowledge and Skills	Opportunities for Learning New Agricultural Production Methods	Zikargae et al. (2022); Heinze et al. (2022); Asitik and Abu (2020); O'Connor et al. (2025); Prain et al. (2020); Nyathi et	CQ2
	Using Knowledge in Decision-Making, Innovation, and Problem-Solving	al. (2022)	CQ3
	Information Dissemination by Relevant Agricultural Training Authorities	Forney (2021); Rossi et al. (2023); Lei and Yang (2024); Wann et al. (2024); Adewale	BQI
Awareness	Timely Receipt of Information for Awareness of Potential and Environmental Changes	(2012); Dessart et al. (2019); Damanik et al. (2021); Zscheischler et al. (2022);	BQ2
	Receiving Information from Other Farmers and Their Successful Activities	Bernini and Galli (2024)	BQ3
	Accessibility to Agricultural Tools and Equipment		DQI
Access to Resources	Access to Formal and Informal Financial Resources, Such as Loans or Grants from the Public and Private Sectors	Azizah et al. (2014); Conceição et al. (2016); Galiè et al. (2019); Dwomoh et al. (2023); Sun et al. (2025); Ashagidigbi et al. (2022); Barak et al. (2024); Tesafa et al.	DQ2
	Farmers' Influence in Decision-Making Regarding the Procurement of Production-Related Supplies and Equipment	(2025); Mataka et al. (2023); Haque et al. (2024)	DQ3
	Receiving Expert Feedback on Successful Agricultural and Non-Agricultural Activities		EQI
	Receiving Specific Feedback for Improving Agricultural Practices	Kaya and Altınkurt (2018); Christian et	EQ2
Access to Support	Providing Tips and Recommendations for Solving Production Problems and Challenges During Climatic or Economic Crises	al. (2024); Manyise and Dentoni (2021); Barbosa (2024); Wu et al. (2025); Finger (2023); Sun et al. (2025)	EQ3
	Assisting in Securing Seeds, Inputs, and Production Tools to Enhance Agricultural Productivity and Sustainability		EQ4
	Receiving Rewards for Innovation in Agricultural Activities to Increase Motivation and Improve Performance	Doss et al. (2018); Kabeer (1999); Zerafati-Shoae et al. (2020); Setyadiharja	HQI
Formal Power	Flexibility in Agricultural Work to Choose Production Methods Based on Needs and Environmental Conditions	et al. (2020); Dessart et al. (2019); Pang et al. (2025); Zamiri and Esmaeili (2024); Zakaria et al. (2020); Adeyanju et al. (2021); Eidt et al. (2020)	HQ2
	Participation in Agricultural Training Programs		HQ3

	Using social media for Product Marketing and Exchange	Clement et al. (2019); Hua and Brown	IQI
Informal Power	Membership in Local Associations and Institutions	(2024); Liu et al. (2022); Valentinov and Iliopoulos (2021); Finger (2023); Davies	IQ2
	Receiving Constructive Feedback from Farmers and Relevant Authorities to Improve Agricultural Performance	et al. (2011); Kanter (1977); Laschinger et al. (2000)	IQ3
	Internal Association Among Farmers to Solve Common Problems		GQI
Association	Association with Experts, Organisations, and Government Institutions in Agricultural Activities	Finger (2023); Hussein et al. (2024); Uphoff (1992); Thompson et al. (2023); Adefila et al. (2024); WFF (2024)	GQ2
	Association with Associations and NGOs for Sharing Indigenous Knowledge		GQ3
	Strengthening Farmers' Capacity through Collaboration with Agricultural Unions and NGOs for Activity Diversification	Aziz et al. (2021); Farah and Amara (2025); Junquera et al. (2022); Tamako et	FQI
Institutionalism	Local Institutions Responsible for Strengthening Educational Infrastructure and Networking Among Farmers	al. (2022); Silva-Jean and Kneipp (2024); Jemaneh and Shibeshi (2023); Putsenteil et al. (2020); Abab et al. (2023); Kehinde et al. (2021); Sun et al. (2025)	FQ2
	Land Reforms and Resource Allocation by Government Institutions	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	FQ3

Table 2. Latent and Observable Variables of Sustainable Food Security

Latent Variables	Observable Variables	References	
Environmental – Ecological – Achievement	Improving Achievement to Food Through Sustainable and Optimal Utilisation of Natural Resources (Water, Soil, Energy, Biodiversity) with the Aim of Preserving and Conserving Them for Future Generations	Habiba et al. (2015); Nwachukwu et al. (2024); Pérez-Escamilla (2017); Reilly et al. (2022); Schling and Pazos (2024); Yahaya et al. (2018)	JQI
Environmental – Ecological – Access	Improving Access to Nutritious and Healthy Food by Reducing Environmental Harm, Such as the Degradation of Natural Resources, Through the Implementation of Sustainable Agricultural Practices and Ecosystem Conservation	Elisante et al. (2019); Heinze et al. (2022); O'Connor et al. (2025); Oghuvbu (2024); Shafieisabet and Mirvahedi (2021); Shafieisabet and Mirvahedi (2022)	JQ2
Environmental – Ecological – Utilization	Improving the Utilization of Diverse Food Products by Enhancing the Quantity and Quality of Agricultural Land Through Modern Irrigation Methods, Optimised Fertilization, and Soil Management	Aziz et al. (2022); Raidimi and Kabiti (2019); Ruzzante et al. (2021); Wonde et al. (2022); Zikargae et al. (2022)	JQ3
Environmental – Ecological – Stability	Improving Stability in the Use of Natural Resources Through Sustainable and Responsible Management, particularly in the Production Process, Aimed at Preserving Renewable Resources for Future Generations	Abdul-Majid et al. (2024); Bernini and Galli (2024); Damanik et al. (2021); Dessart et al. (2019); Finger (2023); Nyathi et al. (2022); Prain et al. (2020)	JQ4

Social – Economic – Achievement	Improving Achievement to Food Through Fair Allocation of Financial Resources, Seeds, and Fertilisers to Farmers, Aimed at Enhancing Production Capacity and Reducing Economic Inequality	Azizah et al. (2014); Conceição et al. (2016); Dwomoh et al. (2023); Lecoutere et al. (2024); Sun et al. (2025); Tesafa et al. (2025); Walters et al. (2021)	KQI
Social – Economic – Access	Improving Fair Access for Farmers to Agricultural Product Markets to Enhance Economic Conditions and Increase Sustainable Incomes	Christian et al. (2024); Finger (2023); Kaya and Altınkurt (2018); Manyise and Dentoni (2021); Sun et al. (2025)	KQ2
Social – Economic – Utilization	Improving the Purchasing Power of Food Through Increasing Consumers' Financial Strength and Reducing Food Price Volatility	Aziz et al. (2022); Berry et al. (2015); Clapp et al. (2022); Kanter (1977); Oghuvbu (2024); Pérez-Escamilla (2017)	KQ3
Social – Economic – Stability	Improving Stability in Food Supply and Access to Inputs (Seeds, Fertilisers, Machinery, etc.) Based on Farmers' Economic Capacity	Abab et al. (2023); Azizah et al. (2014); Barbosa (2024); Conceição et al. (2016); Galiè et al. (2019); Wu et al. (2025)	KQ3
Political – Cultural – Achievement	Improving Achievement to Food Through Government Policies and Agricultural Planning Aimed at Enhancing Production Levels and Promoting Sustainable Agricultural Practices	Azizah et al. (2014); Blesh et al. (2023); Conceição et al. (2016); Sun et al. (2025); Touch et al. (2024)	LQI
Political – Cultural – Access	Improving Access to Food Through Providing Research Services and Extension Education to Farmers Aimed at Enhancing Productivity	Elisante et al. (2019); Raidimi and Kabiti (2019); Reilly et al. (2022); Ruzzante et al. (2021); Wonde et al. (2022); Yahaya et al. (2018)	LQ2
Political – Cultural – Utilization	Improving Food Utilsation Through Promoting Nutritional Culture and Raising Awareness of Proper Diet, Particularly Through Educational Programs	(HLPE, 2020); Pérez-Escamilla (2017); Shafieisabet and Mirvahedi (2021); Shafieisabet and Mirvahedi (2022); Silva-Jean and Kneipp (2024)	LQ3
Political – Cultural – Stability	Improving Stability in Food Supply Through Incentive Policies to Enhance Agricultural Machinery and Equipment Technologies	Barbosa (2024); Galiè et al. (2019); Sun et al. (2025); Tesafa et al. (2025); Wu et al. (2025)	LQ4
Infrastructure – Achievement	Improving Achievement to Food Through the Development and Enhancement of Appropriate Infrastructure for Agricultural Production, Transportation, and Distribution	Barbosa (2024); Conceição et al. (2016); Sun et al. (2025); Wu et al. (2025)	MQI
Infrastructure – Access	Improving Access to Food Through the Use of Appropriate Machinery and Agricultural Mechanisation	Aziz et al. (2022); Ruzzante et al. (2021); Wonde et al. (2022); Wu et al. (2025)	MQ2
Infrastructure – Utilization	Improving Food Utilisation Through Optimising Storage, Processing, Distribution, and Transportation Processes of Products	Aziz et al. (2022); Elisante et al. (2019); Raidimi and Kabiti (2019)	MQ3
Infrastructure – Stability	Stability in Food Supply Through Strengthening and Expanding Food Supply Centres	Christian et al. (2024); Kaya and Altınkurt (2018); Manyise and Dentoni (2021); Sun et al. (2025)	MQ4

Analytical methods

The study adopts a quantitative, cross-sectional design with a descriptive-analytical approach. Data were analysed using multiple statistical methods, including Multiple Linear Regression (MLR) and Structural Equation Modelling (SEM) with the Partial Least Squares (PLS) method, facilitated by SPSS and Smart PLS 3 software, respectively. MLR was employed to examine the linear relationships between structural empowerment indices and sustainable food security. This method assumes linear relationships between dependent and independent variables and is typically used to analysed straightforward data and explore direct associations. SEM with PLS was applied to investigate causal relationships and the underlying structures among variables. SEM is particularly suited for modelling complex, nonlinear relationships, allowing the simultaneous analysis of multiple independent and dependent variables. This approach enables a deeper understanding of causal connections and intricate relationships between variables. Data were collected through field surveys, which provided information on farmers' structural empowerment indicators and the dimensions of sustainable food security in rural areas. These surveys facilitated the exploration of the association between these indicators and food security outcomes.

Results

Multiple Linear Regression Analysis

In the first step, we applied a multiple linear regression model to assess the impact of various dimensions of structural empowerment on changes in food security within rural communities. The results revealed that all variables included in the final model had a positive and statistically significant impact on sustainable food security (p < 0.000 for all dimensions) (Table 3). The dimension with the strongest standardised regression coefficient was "association" (β = 0.602), which encompasses elements such as internal association collaboration among farmers to solve everyday problems, external partnerships with experts, organisations, and government agencies, associations with NGOs to share Indigenous knowledge (Table 1). These findings underscore the importance of social capital and participatory networks in fostering food security.

The second most influential dimension was "Awareness" (β = 0.456), which includes timely dissemination of information about training programs, production potential, climate change, and knowledge sharing among farmers regarding successful agricultural practices (Table 3). This highlights the critical role of awareness and information accessibility in supporting informed decision-making regarding food production and consumption, especially in environmental instability. The "Knowledge and Skills" dimension (β = 0.384) also significantly contributed to food security, reflecting the importance of modern technology adoption, problem-solving abilities in production, and creative decision-making. These results suggest that empowerment and mastery over practical knowledge enhance individual agency within the food supply chain. It is noteworthy that three variables—"Access to Resources," "Institutionalism," and "Access to Support"—were excluded from the final model (Table 4). This exclusion may be attributed to the limited effectiveness of formal institutions, the inequitable distribution of resources, and insufficient structural support for farmers. In such contexts, informal networks and individual capacities often serve as compensatory mechanisms.

Table 3. Regression model to explain the effect of empowerment of farmers on sustainable food security

Model	Variables	Multiple correlation coefficient (R)	The coefficient of determination (R ²)	The adjusted coefficient	ANOVA (F)	Sig.
I	Association	0.602	0.362	0.361	226.052	0.000
2	Awareness	0.700	0.490	0.488	190.773	0.000
3	Knowledge and skills	0.739	0.547	0.543	159.274	0.000
4	Formal power	0.771	0.594	0.590	144.287	0.000
5	Informal power	0.792	0.627	0.622	132.467	0.000
6	Training	0.795	0.632	0.626	112.324	0.000

Table 4. Impact coefficients of the final model of independent variables on sustainable food security

	Variables	Non-standa	rd coefficient	Standard coefficient	т	Sig.	
		В	std	Beta			
	Association	1.398	0.83	0.602	16.743	0.000	
The final	Awareness	0.885	0.091	0.456	12.104	0.000	
model	Knowledge and skills	0.672	0.091	0.384	10.104	0.000	
	Formal power	0.530	0.089	0.253	6.196	0.000	
	Informal power	0.301	0.093	0.238	6.046	0.000	
	Training	0.281	0.093	0.237	6.065	0.000	

PLS-SEM Analysis

In the second step, we employed a two-stage partial least squares structural equation modelling (PLS-SEM) approach. The first stage involved evaluating the measurement model, which assesses the reliability and validity of the constructs by examining the relationships between latent variables and their indicators. The second stage focused on evaluating the structural model, which tests the hypothesised relationships between the latent variables. This was accomplished by estimating the paths between the variables and examining the model fit indices.

Measurement Model

The reliability and validity of the constructs in the measurement model were evaluated using Partial Least Squares Structural Equation Modelling (PLS-SEM) as the first step. Reliability was assessed using Cronbach's alpha and Composite Reliability (CR) according to Holland's theoretical framework (1999). As presented in Table 5, Cronbach's alpha values for all constructs exceeded the 0.70 threshold, indicating acceptable reliability. Likewise, the CR values exceeded the recommended threshold of 0.70, confirming good internal consistency and composite reliability across the variables.

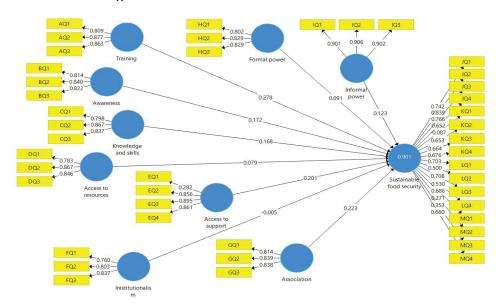
Convergent validity was assessed using the Average Variance Extracted (AVE) index, following the guidelines of Fornell and Larcker (1981). An AVE value greater than 0.50 is considered indicative of adequate convergence. Table 5 shows that all constructs met this criterion, with the "Informal Power" variable achieving the highest AVE value of 0.816.

Discriminant validity was evaluated using the Fornell and Larcker criterion, which requires that the square root of the AVE for each construct (the diagonal value in the correlation matrix) exceeds its correlation with other constructs. As shown in Table 6, this condition was met for all constructs, confirming the discriminant validity of the measurement model. These results indicate that the latent variables are distinct and free from conceptual overlap.

Table 5. Convergent validity indicators and reliability of research variables

Variables	Cronbach's Alpha	Rho_A	Composite Reliability (CR)	AVE
Training	0.807	0.809	0.886	0.723
Awareness	0.766	0.769	0.865	0.681
Knowledge and skills	0.781	0.781	0.873	0.696
Access to resources	0.779	0.783	0.871	0.694
Access to support	0.717	0.815	0.836	0.589
Institutionalism	0.719	0.726	0.842	0.641
Association	0.775	0.775	0.869	0.689
Formal power	0.757	0.756	0.860	0.673
Informal power	0.887	0.887	0.930	0.816
Sustainable food security	0.876	0.911	0.899	0.680

Table 6. Correlation matrix of research variables (Discriminant validity)


	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)
(a) Access to resources	0.737									
(b) Access to support	0.598	0.691								
(c)Association	0.464	0.653	0.730							
(d) Awareness	0.562	0.519	0.573	0.723						
(e) Formal power	0.468	0.599	0.655	0.766	0.713					
(f) Informal power	0.800	0.882	0.763	0.554	0.620	0.850				
(g) Institutionalism	0.926	0.552	0.655	0.673	0.861	0.466	0.681			
(h) Knowledge and skills	0.641	0.470	0.763	0.444	0.487	0.519	0.671	0.736		
(i) Sustainable food security	0.502	0.552	0.643	0.758	0.799	0.820	0.747	0.657	0.592	
(j) Training	0.641	0.880	0.852	0.540	0.503	0.670	0.461	0.407	0.821	0.764

Structural Model

In the second stage, the structural model was analysed to test the hypotheses and examine the relationships between the variables. Partial Least Squares Structural Equation Modelling (PLS-SEM) was employed to assess the causal relationships among the latent constructs. This model focused on the relationship between the independent variable, the structural empowerment of farmers, and the dependent variable, the dimensions of sustainable food security, represented by causal paths. Figure 3 illustrates the model with standardised coefficients. In this model, circles represent latent variables, while rectangles denote observed variables. The path coefficients between latent variables indicate the strength and direction of the causal effects, and the values inside the circles (R²) reflect the variance explained by the predictor variables. The results indicate that the structural empowerment of farmers significantly explains the four dimensions of sustainable food security: environmental-ecological, socio-economic, political-cultural, and infrastructural.

T-statistics were computed using the bootstrap resampling technique to assess the significance of the path coefficients. This method generates robust estimates of standard errors and confidence intervals, providing more reliable statistical inference in structural equation modelling. As shown in Figure 4, most paths were significant at the 95% confidence level (t-value > 1.96), except the path related to "Institutionalism," which did not achieve the required significance threshold. This suggests that institutionalism did not significantly contribute to explaining sustainable food security within the tested framework. In contrast, other components of empowerment, including awareness, cooperation, formal and informal power, and training, had significant positive effects on food security.

Figure 3. Model in standardized coefficient model

The results of the path analysis, summarised in Table 7, indicate that eight of the nine hypotheses were supported. Specifically, the variables "Training," "Knowledge and Skills," "Awareness," "Access to Resources," "Access to Support," "Formal Power," "Informal Power," and "Association" all had a positive and statistically significant effect on sustainable food security. The path coefficients (p < 0.001) and t-statistics (values greater than 2.76) confirm these findings. In contrast, the ninth hypothesis posited that "Institutionalism" influences sustainable food security was not supported. The t-statistic of 0.188 and a p-value of 0.851 indicated no significant relationship between these variables. This result aligns with the descriptive section of the study, which highlights the weak performance of formal institutions and the inefficiency of existing structures in supporting and organising farmers.

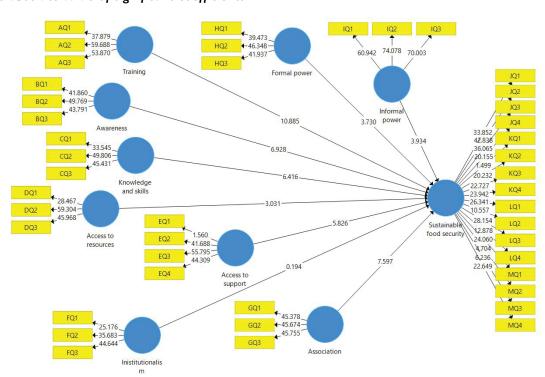


Figure 4. The absolute value of significant coefficients

Table 7. Path coefficients (beta), t-statistic, coefficient of determination, and the result of research hypotheses

Path	T-value	P-value	Results
Training of farmers → sustainable food security	10.762	0.000	Accepted
Knowledge and skills of farmers → sustainable food security	6.361	0.000	Accepted
Awareness of farmers → sustainable food security	6.771	0.000	Accepted
Access to resources by farmers → sustainable food security	2.764	0.006	Accepted
Access to support by farmers → sustainable food security	6.250	0.000	Accepted
Formal power of farmers -> sustainable food security	3.776	0.000	Accepted
Informal power of farmers -> sustainable food security	3.752	0.000	Accepted
Association of farmers -> sustainable food security	7.540	0.000	Accepted
Institutionalism for farmers -> sustainable food security	0.188	0.851	Rejected

Discussion

The present study examines the role of structural empowerment in enhancing sustainable food security among farmers in the south-eastern region of Tehran, Iran. The findings reveal a strong and significant relationship between the components of structural empowerment and various dimensions of sustainable food security. Analyses indicate that while farmers possess individual capacities such as awareness and association,

institutional and structural constraints limit fully realising the region's sustainable food security potential.

Hypothesis I, which posits that farmer training positively impacts sustainable food security, aligns with findings by Wonde et al. (2022), who demonstrated that agricultural training in Ethiopia boosted productivity and farmer income, thereby enhancing food security. Similarly, Raidimi and Kabiti (2019) found that farmer training in South Africa directly improved production and food security. Furthermore, Essilfie et al. (2021) and Vogliano et al. (2021) emphasised the significance of farmer training and empowerment in improving food security, with agricultural knowledge and skills leading to better nutritional and food security outcomes. Hypothesis 2, which suggests a significant relationship between farmers' knowledge and skills and sustainable food security, is supported by research from Sharaunga et al. (2015) and Asitik and Abu (2020), who highlighted the positive impact of skill development on food security. Abdul-Majid et al. (2024) and Finger (2023) further corroborate this, stressing the importance of enhancing farmers' skills and knowledge to improve food security outcomes. Hypothesis 3, which indicates that farmers' awareness contributes to improved sustainable food security, is consistent with studies by Wann et al. (2024) and Lei and Yang (2024), which argue that increased awareness fosters better decision-making in production and consumption, thus promoting sustainable food security. Additionally, research by Dessart et al. (2019) and Bernini and Galli (2024) suggests that accurate, up-to-date information on sustainable practices aids decision-making and enhances food security. Hypothesis 4, which asserts that access to resources improves sustainable food security, is corroborated by studies by Conceição et al. (2016) in sub-Saharan Africa, Tesafa et al. (2025) in Ethiopia, and Galiè et al. (2019) in Tanzania. These studies emphasise the role of access to productive resources, agricultural infrastructure, and supportive services in bolstering resilience and food security sustainability. Path analysis in the current study further supports this, showing that farmers' access to institutional and policy support positively impacts sustainable food security. This is consistent with findings by Finger (2023) and Wu et al. (2025), who highlighted the importance of digital innovations and infrastructure support from governmental and non-governmental institutions in strengthening agricultural system resilience and sustainability.

Hypothesis 5 demonstrates farmers' access to institutional and policy support positively impacts sustainable food security. This is consistent with the findings of Finger (2023), Wu et al. (2025), and Barbosa (2024), all of whom highlight the importance of digital innovations and infrastructure support from both governmental and non-governmental institutions in strengthening agricultural system resilience and sustainability. Hypothesis 6, which posits that formal power positively influences sustainable food security, is consistent with findings by Setyadiharja et al. (2020), Doss et al. (2018), Dessart et al. (2019), Pang et al. (2025), and Zamiri and Esmaeili (2024). These studies highlight the effectiveness of formal and structural power in enhancing agency, motivation, and collective participation. Hypothesis 7, suggesting that informal power among farmers positively impacts sustainable food security, aligns with research by Valentinov and Iliopoulos (2021), Liu et al. (2022) in China, Hua and Brown (2024), and Clement et al. (2019). These studies underscore the importance of social networks, social capital, and local trust in fostering flexible resource management and enhancing food system sustainability. Hypothesis 8, which asserts that cooperation between farmers, associations, and institutions is crucial for sustainable food security, is supported by the literature of WFF (2024) and findings from Hussein et al. (2024) and Thompson et al. (2023). These studies emphasise the role of social capital, organisations, and group learning in strengthening resilience and cohesion within agricultural systems.

Hypothesis 9, which explores the role of institutionalism in sustainable food security, was not supported. This result aligns with the work of Ben Farah and Amara (2025) and Manyise and Dentoni (2021), who identified the weak performance of formal institutions and the ineffective linkage between institutions and farmers as contributing to structural inefficiency in developing countries. However, it contradicts the findings of Kehinde et al. (2021), Junquera et al. (2022), and Silva-Jean and Kneipp (2024), who observed a positive impact of institutions on agricultural sustainability. The divergence may stem from differences in institutional contexts, local participation, and the effectiveness of organisations. Institutions in the studied region are often perceived as bureaucratic entities, sometimes ineffective, not as development facilitators. The limited impact

of institutionalism in rural Iran, particularly in the study area, can be attributed to several factors, including the historical weakness of intermediary structures, low participation by formal institutions, and farmers' negative perceptions of institutional roles. Government institutions and cooperatives have traditionally taken a "commanding" approach characterised by top-down policymaking, which has replaced meaningful communication with local communities. As a result, farmers often view institutions as obstacles rather than supporters, contributing to the perception of bureaucracy. Moreover, many institutions in Iran are hindered by financial, administrative, and operational constraints, often prioritising implementing pre-determined policies over conducting needs assessments. Consequently, institutionalism has shown weaker practical effects than anticipated, as reflected in the data, which indicates a non-significant impact.

The results underscore the importance of fostering institutional and policy support, improving access to resources, and promoting cooperation among farmers to enhance food system resilience and sustainability. In conclusion, the study demonstrates that structural empowerment is most effective when pursued within a multidimensional and systematic framework that not only focuses on enhancing individual farmer capacities but also seeks to comprehensively reconstruct and redefine institutional structures and supportive environments. Therefore, achieving sustainable food security requires targeted policy interventions at three levels: training and awareness, supportive structures, and strengthening collective action at the local level. Only through these efforts can farmers effectively and flexibly address emerging environmental, economic, and social challenges. From a theoretical standpoint, the findings support the applicability of Kanter's structural empowerment theory to rural contexts. Initially developed for formal organisational settings, the study reveals that concepts such as "opportunity structure," "formal/informal power," and "access to resources" are also relevant in agricultural communities, especially where social relationships, local networks, and social capital are more significant than formal structures. Thus, this study not only tests the theory in a new context but also adapts it with a localised approach.

This research contributes to the international literature on sustainable food security by introducing the concept of structural empowerment, an aspect often overlooked in rural development studies. While previous research has focused on psychological, gender-based, or economic empowerment, this study applies and localises Kanter's structural empowerment theory in Iranian villages, revealing that collective agency, informal power, and knowledge-based cooperation are key factors in enhancing food security. The empirical evidence confirms the theory's applicability beyond formal organisations and highlights the inefficiency of existing institutional structures. These findings offer a new analytical framework for understanding the structural barriers to food sustainability and provide a foundation for comparative studies in regions with varying governance structures.

Conclusion

This study examined the impact of structural empowerment components on the four dimensions of sustainable food security in rural Iran. Data analysis revealed that farmer empowerment—especially regarding awareness, knowledge, skills, and association—is crucial in promoting food sustainability. However, the ineffective performance of formal institutions and inefficient organisational structures in resource distribution have diminished the impact of macro-level policies in this area. The findings highlight that top-down, technocratic approaches to farmer empowerment are insufficient for achieving long-term food security sustainability. Successful policies must address social, participatory, and institutional contexts. Specifically, fostering farmers' agency, supporting collective learning, restructuring institutional frameworks, and enhancing social capital is essential. Furthermore, the significant role of informal networks, local relationships, and social institutions in improving sustainable food security indicators is a key outcome of this study. The results support Kanter's structural empowerment theory's applicability in agricultural and rural settings. The theory's focus on access to resources, information, institutional support, and formal and informal power provides a robust framework for analyzing and advancing sustainable food security initiatives.

Based on the research findings, several recommendations for future studies are proposed to advance the understanding of structural empowerment and sustainable food security. Future research should explore gender disparities in structural empowerment, focusing on uncovering hidden inequalities and opportunities for female farmers. Additionally, employing mixed-methods approaches, combining qualitative and quantitative research, will offer deeper insights into informal mechanisms and local power networks. Comparative studies between Iran and other countries, such as Turkey, Egypt, India, and Morocco, could enhance regional policymaking capacity regarding sustainable food security. Moreover, examining the role of intermediary institutions like agricultural cooperatives and non-governmental organisations in facilitating access to resources, information, and support would provide a clearer picture of collective empowerment dynamics. These recommendations aim to deepen our understanding of structural empowerment in rural contexts and inform the development of more effective policies for food security.

Regarding practical and policy implications, the study suggests several actions for key stakeholders. Agricultural and rural development sector policymakers should prioritise revising empowerment policies by shifting from top-down approaches to bottom-up, context-specific capacity-building strategies. Investing in training systems that integrate practical, production-oriented skills and long-term institutional support is critical for ensuring that agricultural education aligns with farmers' needs. The study also highlights the need for restructuring ineffective institutions to enhance transparency, accountability, and inclusivity. For development organisations, NGOs, and intermediary institutions, the findings suggest creating and supporting local associations, such as cooperatives and collective learning spaces, to foster cooperation among farmers. These organisations should adopt a facilitative role, empowering farmers to become solution-oriented agents rather than executing projects directly. Furthermore, establishing horizontal networks among farmers can enhance the sharing of indigenous knowledge, successful practices, and social capital. Finally, for farmers and local stakeholders, the study emphasises the importance of self-organisation, participatory learning, and viewing themselves as active agents in driving change. Farmers can increase their bargaining power and problem-solving abilities by leveraging social networks and informal relationships. Empowering farmers with the knowledge, skills, and confidence to make independent decisions is essential for sustainable food security. These findings provide valuable insights for designing policies and interventions addressing the individual and structural factors critical for achieving long-term food security.

This study, while offering valuable insights, is subject to several limitations. First, the localisation of the Structural Empowerment Questionnaire presents a constraint. Although the questionnaire was adapted from Kanter's theoretical framework and standard CWEQ versions to fit the rural context of Iran, it is the first time this tool has been applied in the agricultural sector. As such, its items are not fully standardised across agricultural contexts but are tailored to the local setting. While the tool underwent rigorous validity checks (face and content validity) and demonstrated strong statistical reliability, future studies should validate it in diverse rural regions to improve its applicability and generalizability. Another limitation is the lack of a globally standardised tool for measuring sustainable food security. The questionnaire used in this study combines the classical dimensions of food security with sustainability factors (environmental, social, political, infrastructural). While this integrated model is innovative, the absence of an established global framework in this field limits direct comparisons with other studies. Furthermore, time and spatial limitations during data collection in southeastern Tehran's agricultural areas, including overlaps with farmers' working seasons and coordination challenges with local authorities, may have impacted the accuracy and diversity of the responses. Lastly, the regional focus of the study, confined to rural villages in southeastern Tehran, restricts the generalizability of the findings. Although the results may be relevant to regions with similar institutional and environmental structures, caution is advised when extending the conclusions to other parts of Iran or other countries. Therefore, future research should seek to validate these findings in diverse geographical and agricultural contexts and explore broader comparisons in the global literature on sustainable food security.

References

- Abab SA, Senbeta F and Negash TT (2023) The Effect of Land Tenure Institutional Factors on Small Landholders' Sustainable Land Management Investment: Evidence from the Highlands of Ethiopia. Sustainability 15(12): 9150.
- Abdolmaleky M (2012) Preconditions of Small-Farmers' Empowerment to Success in Farm Operations in Lorestan Province, Iran. World Applied Sciences Journal 19(4): 523-529.
- Abdul-Majid M, Zahari SA, Othman N, et al. (2024) Influence of technology adoption on farmers' well-being: Systematic literature review and bibliometric analysis. Heliyon 10(2).
- Adefila AO, Ajayi OO, Toromade AS, et al. (2024) Integrating traditional knowledge with modern agricultural practices: A sociocultural framework for sustainable development. World Journal of Biology Pharmacy and Health Sciences 20(2): 125–135.
- Adewale J (2012) Information on Maize Production among Rural Youth:: A Solution for Sustainable Food Security In Nigeria. Library Philosophy and Practice (e-journal) 724: I-13.
- Adeyanju D, Mburu J and Mignouna D (2021) Youth Agricultural Entrepreneurship: Assessing the Impact of Agricultural Training Programmes on Performance. Sustainability 13(4): 1697.
- Al-Hammouri MM, Rababah JA and Ta'an WaF (2021) Structural empowerment, formal and informal power, and job performance quality: A moderated mediation analysis. Journal of Nursing Management 29(6): 1596-1602.
- Ashagidigbi WM, Orilua OO, Olagunju KA, et al. (2022) Gender, Empowerment and Food Security Status of Households in Nigeria. Agriculture 12(7): 956.
- Asitik AJ and Abu BM (2020) Women empowerment in agriculture and food security in Savannah Accelerated Development Authority zone of Ghana. African Journal of Economic and Management Studies 11(2): 253-270.
- Aziz N, He J, Raza A, et al. (2022) A systematic review of review studies on women's empowerment and food security literature. Global Food Security 34: 100647.
- Aziz N, Nisar QA, Koondhar MA, et al. (2020) Analyzing the women's empowerment and food security nexus in rural areas of Azad Jammu & Kashmir, Pakistan: By giving consideration to sense of land entitlement and infrastructural facilities. Land Use Policy 94: 104529.
- Aziz N, Ren Y, Rong K, et al. (2021) Women's empowerment in agriculture and household food insecurity: Evidence from Azad Jammu & Kashmir (AJK), Pakistan. Land Use Policy 102: 105249.
- Azizah S, Kliwon H, Keppi S, et al. (2014) Participatory development communication (PDC) practice and farm input accessibility as enhancing factors of broiler farmers' empowerment in Malang Regency, East Java, Indonesia. Livestock Research for Rural Development 26(2): I-II.
- Bain C, Ransom E and Halimatusa'diyah I (2020) Dairy Livestock Interventions for Food Security in Uganda: What are the Implications for Women's Empowerment? Rural Sociology 85(4): 991-1020.
- Balasundram SK, Shamshiri RR, Sridhara S, et al. (2023) The Role of Digital Agriculture in Mitigating Climate Change and Ensuring Food Security: An Overview. Sustainability 15(6): 5325.
- Barak F, Efitre J, Odong R, et al. (2024) Intrahousehold empowerment patterns, gender power relations, and food security in Uganda. World Food Policy 10(1): 7-32.
- Barbosa MW (2024) Government Support Mechanisms for Sustainable Agriculture: A Systematic Literature Review and Future Research Agenda. Sustainability 16(5): 2185.
- Bernini C and Galli F (2024) Economic and Environmental Efficiency, Subsidies and Spatio-Temporal Effects in Agriculture. Ecological Economics 218: 108120.
- Berry EM, Dernini S, Burlingame B, et al. (2015) Food security and sustainability: can one exist without the other?

- Public Health Nutrition 18(13): 2293-2302.
- Blesh J, Mehrabi Z, Wittman H, et al. (2023) Against the odds: Network and institutional pathways enabling agricultural diversification. One Earth 6(5): 479-491.
- Christian M, Obi A, Zantsi S, et al. (2024) The Role of Cooperatives in Improving Smallholder Participation in Agri-Food Value Chains: A Case Study of One Local Municipality in Eastern Cape, South Africa. Sustainability 16(6): 2241.
- Clapp J, Moseley WG, Burlingame B, et al. (2022) Viewpoint: The case for a six-dimensional food security framework. Food Policy 106: 102164.
- Clement F, Buisson M-C, Leder S, et al. (2019) From women's empowerment to food security: Revisiting global discourses through a cross-country analysis. Global Food Security 23: 160-172.
- Conceição P, Levine S, Lipton M, et al. (2016) Toward a food secure future: Ensuring food security for sustainable human development in Sub-Saharan Africa. Food Policy 60: 1-9.
- Damanik IPN, Tahitu ME, Turukay M, et al. (2021) Farmers empowerment level analysis in farming during the Covid-19 pandemic and its impact on farm income. IOP Conference Series: Earth and Environmental Science 883(1): 012034.
- Dan X, Xu S, Liu J, et al. (2018) Relationships among structural empowerment, innovative behaviour, self-efficacy, and career success in nursing field in mainland China. International Journal of Nursing Practice 24(5): e12674.
- Davies A, Wong CA and Laschinger H (2011) Nurses' participation in personal knowledge transfer: the role of leader-member exchange (LMX) and structural empowerment. Journal of Nursing Management 19(5): 632-643.
- Dessart FJ, Barreiro-Hurlé J and van Bavel R (2019) Behavioural factors affecting the adoption of sustainable farming practices: a policy-oriented review. European Review of Agricultural Economics 46(3): 417-471.
- Dhal SB and Kar D (2024) Transforming Agricultural Productivity with Al-Driven Forecasting: Innovations in Food Security and Supply Chain Optimisation. Forecasting 6(4): 925-951.
- Doss C, Meinzen-Dick R, Quisumbing A, et al. (2018) Women in agriculture: Four myths. Global Food Security 16: 69-74.
- Dwomoh D, Agyabeng K, Tuffour HO, et al. (2023) Modelling inequality in access to agricultural productive resources and socioeconomic determinants of household food security in Ghana: a cross-sectional study. Agricultural and Food Economics 11(1): 24.
- Eidt CM, Pant LP and Hickey GM (2020) Platform, Participation, and Power: How Dominant and Minority Stakeholders Shape Agricultural Innovation. Sustainability 12(2): 461.
- Elisante F, Ndakidemi PA, Arnold SEJ, et al. (2019) Enhancing knowledge among smallholders on pollinators and supporting field margins for sustainable food security. Journal of Rural Studies 70: 75-86.
- Essilfie G, Sebu J, Annim SK, et al. (2021) Women's empowerment and household food security in Ghana. International Journal of Social Economics 48(2): 279-296.
- Ezzeddin N, Kalantari N, Abdollahi M, et al. (2024) Outcomes of a homestead food production program on nutritional knowledge, dietary diversity, food security and empowerment of rural women in Tehran province, Iran. BMC Public Health 24(1): 118.
- Fanzo J, de Steenhuijsen Piters B, Soto-Caro A, et al. (2024) Global and local perspectives on food security and food systems. Communications Earth & Environment 5(1): 227.
- Farah SB and Amara N (2025) Lab to farm: mapping knowledge transfer channels and determinants from researchers' perspective A systematic literature review. Journal of Innovation & Knowledge 10(1): 100650.
- Finger R (2023) Digital innovations for sustainable and resilient agricultural systems. European Review of Agricultural

- Economics 50(4): 1277-1309.
- Forney J (2021) Farmers' empowerment and learning processes in accountability practices: An assemblage perspective. Journal of Rural Studies 86: 673-683.
- Galeana-Pizaña JM, Couturier S, Figueroa D, et al. (2021) Is rural food security primarily associated with smallholder agriculture or with commercial agriculture?: An approach to the case of Mexico using structural equation modelling. Agricultural Systems 190: 103091.
- Galiè A, Teufel N, Girard AW, et al. (2019) Women's empowerment, food security and nutrition of pastoral communities in Tanzania. Global Food Security 23: 125-134.
- Habiba U, Abedin MA and Shaw R (2015) Future Approaches of Food Security, Sustainable Development, Environment and Resource Management and Risk Reduction. In: Habiba U, Hassan AWR, Abedin MA, et al. (eds) Food Security and Risk Reduction in Bangladesh. Tokyo: Springer Japan, pp.255-273.
- Habtewold TM and Heshmati A (2023) Impacts of improved agricultural technology adoption on welfare in Africa: A meta-analysis. Heliyon 9(7): e17463.
- Haque S, Salman M, Hasan MM, et al. (2024) Women's empowerment and its role in household food security to achieve SDGs: Empirical evidence from rural Bangladesh. Sustainable Development 32(4): 4297-4314.
- Hasdiansyah A, Sugito S and Suryono Y (2021) Empowerment of farmers: The role of actor and the persistence of coffee farmers in rural pattongko, indonesia. The Qualitative Report 26(12): 3805-3822.
- Heinze A, Bongers F, Ramírez Marcial N, et al. (2022) Farm diversity and fine scales matter in the assessment of ecosystem services and land use scenarios. Agricultural Systems 196: 103329.
- Hiywotu AM (2025) Advancing sustainable agriculture for goal 2: zero hunger a comprehensive overview of practices, policies, and technologies. Agroecology and Sustainable Food Systems. DOI: 10.1080/21683565.2025.2451344. I-29.
- HLPE (2020) Food security and nutrition: building a global narrative towards 2030. Reportno. Report Number|, Date. Place Published|: Institution|.
- Hua HH and Brown PR (2024) Social capital enhances the resilience of agricultural cooperatives: Comparative case studies in the Mekong Delta, Vietnam. World Development Sustainability 5: 100170.
- Hulland J (1999) Use of partial least squares (PLS) in strategic management research: a review of four recent studies. Strategic Management Journal 20(2): 195-204.
- Hussein J, Bilotto F, Mbui D, et al. (2024) Exploring smallholder farm resilience to climate change: intended and actual adaptation. Pastoralism: Research, Policy and Practice Volume 14 2024.
- Jemaneh SA and Shibeshi EM (2023) Women empowerment in agriculture and its effect on household food security: evidence from Gamo Zone of Southern Ethiopia. Agriculture & Food Security 12(1): 37.
- Junquera V, Rubenstein DI, Grêt-Regamey A, et al. (2022) Structural change in agriculture and farmers' social contacts: Insights from a Swiss mountain region. Agricultural Systems 200: 103435.
- Kabeer N (1999) Resources, Agency, Achievements: Reflections on the Measurement of Women's Empowerment. Development and Change 30(3): 435-464.
- Kanter RM (1977) Men And Women Of The Corporation. Basic Books.
- Kanter RM (2008) Men and Women of the Corporation: New Edition. Basic Books.
- Kaya Ç and Altınkurt Y (2018) Role of Psychological and Structural Empowerment in the Relationship between Teachers' Psychological Capital and Their Levels of Burnout. 2018 43(193): 63-78.
- Kehinde AD, Adeyemo R and Ogundeji AA (2021) Does social capital improve farm productivity and food security?

- Evidence from cocoa-based farming households in Southwestern Nigeria. Heliyon 7(3): e06592.
- Laschinger HKS, Finegan J, Shamian J, et al. (2000) Organisational Trust and Empowerment in Restructured Healthcare Settings: Effects on Staff Nurse Commitment. JONA: The Journal of Nursing Administration 30(9): 413-425.
- Laschinger HKS, Finegan JE, Shamian J, et al. (2004) A longitudinal analysis of the impact of workplace empowerment on work satisfaction. Journal of Organisational Behavior 25(4): 527-545.
- Lecoutere E, Achandi EL, Ampaire EL, et al. (2024) Fostering an enabling environment for equality and empowerment in agri-food systems: An assessment at multiple scales. Global Food Security 40: 100735.
- Lei X and Yang D (2024) Cultivating Green Champions: The Role of High-Quality Farmer Training in Sustainable Agriculture. Journal of the Knowledge Economy. DOI: 10.1007/s13132-024-02014-8.
- Liu Y, Liu Z, Liu J, et al. (2022) Research on the Impact of Members' Social Capital within Agricultural Cooperatives on Their Adoption of IPM in China. International Journal of Environmental Research and Public Health 19(18): 11538.
- Lufuke M, Bai Y, Fan S, et al. (2023) Women's Empowerment, Food Security, and Nutrition Transition in Africa. International Journal of Environmental Research and Public Health 20(1): 254.
- Manyise T and Dentoni D (2021) Value chain partnerships and farmer entrepreneurship as balancing ecosystem services: Implications for agri-food systems resilience. Ecosystem Services 49: 101279.
- Mataka T, Kaitibie S and Ratna NN (2023) Can women's empowerment in livestock farming improve household food security? Empirical evidence from rural households in Malawi. Agriculture & Food Security 12(1): 35.
- Monje-Amor A, Abeal Vázquez JP and Faíña JA (2020) Transformational leadership and work engagement: Exploring the mediating role of structural empowerment. European Management Journal 38(1): 169-178.
- Moura AA, Souza A, Silva P, et al. (2024) Analysis of structural empowerment of nurses in the context of an emergency hospital. Rev Gaucha Enferm 45: e20240029.
- Murugani VG and and Thamaga-Chitja JM (2019) How does women's empowerment in agriculture affect household food security and dietary diversity? The case of rural irrigation schemes in Limpopo Province, South Africa. Agrekon 58(3): 308-323.
- Nwachukwu RU, Oyigbo DN, Edeh EN, et al. (2024) Predictive Role of Extension Education in Achieving Sustainable Food Security in Enugu State, Nigeria. Nsukka Journal of the Humanities 32(4): 120-128.
- Nyathi D, Ndlovu J, Ncube N, et al. (2022) The Dynamics of Promoting Youth Participation in Smallholder Agriculture for Sustainable Food Security in Lupane District, Zimbabwe. In: Leal Filho W, Kovaleva M and Popkova E (eds) Sustainable Agriculture and Food Security. Cham: Springer International Publishing, pp.245-258.
- O'Connor G, Reis K, Desha C, et al. (2025) Valuing farmers in transitions to more sustainable food systems: A systematic literature review of local food producers' experiences and contributions in short food supply chains. Agriculture and Human Values 42(1): 565-592.
- Oghuvbu EA (2024) Women's empowerment and food security in the South-South geopolitical zone of Nigeria. Masyarakat, Kebudayaan dan Politik 37(2): 180-191.
- Onyeaka H, Ejiohuo O, Taiwo OR, et al. (2024) The Intersection of Food Security and Mental Health in the Pursuit of Sustainable Development Goals. Nutrients 16(13): 2036.
- Orgambídez A, Benítez M, León-Pérez JM, et al. (2024) Structural empowerment, personal initiative, and job satisfaction in service employees: Exploring the mediating role of psychological empowerment. Scandinavian Journal of Psychology 65(5): 911-918.
- Ozbozkurt OB, Fatma Y and and Korkmazyurek H (2021) Analyzing the relationship between structural empowerment and perceived supervisor support*. Journal of Transnational Management 26(1): 4-17.

- Pang Y, Helin Z, Chunchun J, et al. (2025) Expected profitability, independence, and risk assessment of small farmers in the wave of GM crop collectivisation—evidence from Xinjiang and Guangdong. GM Crops & Food 16(1): 97-117.
- Pawlak K and Kołodziejczak M (2020) The Role of Agriculture in Ensuring Food Security in Developing Countries: Considerations in the Context of the Problem of Sustainable Food Production. Sustainability 12(13): 5488.
- Pérez-Escamilla R (2017) Food Security and the 2015–2030 Sustainable Development Goals: From Human to Planetary Health. Current Developments in Nutrition 1(7): e000513.
- Prain G, Wheatley C, Odsey C, et al. (2020) Research-development partnerships for scaling complex innovation: Lessons from the Farmer Business School in IFAD-supported loan-grant collaborations in Asia. Agricultural Systems 182: 102834.
- Putsenteil P, Klapkiv Y, Karpenko V, et al. (2020) The role of institutions in the development of agriculture. Bulgarian Journal of Agricultural Science 26(1): 23-33.
- Raidimi E and Kabiti H (2019) A review of the role of agricultural extension and training in achieving sustainable food security: a case of South Africa. South African Journal of Agricultural Extension (SAJAE) 47(3): 120-130.
- Ramos V, Franco-Crespo A, González-Pérez L, et al. (2019) Analysis of organisational power networks through a holistic approach using consensus strategies. Heliyon 5(2): e01172.
- Reilly C, Kathryn S, Wendy W, et al. (2022) Agricultural and environmental education: a call for meaningful collaboration in a U.S. context. Environmental Education Research 28(9): 1410-1422.
- Reinbott A (2019) Improvement of Food Security in Bangladesh through Socio-Economic Empowerment of Women. Future of Food: Journal on Food, Agriculture and Society 1(1): 7-12.
- Rossi ES, Materia VC, Caracciolo F, et al. (2023) Farmers in the transition toward sustainability: what is the role of their entrepreneurial identity? Frontiers in Sustainable Food Systems Volume 7 2023.
- Rowlands J (1995) Empowerment examined. Development in Practice 5(2): 101-107.
- Ruzzante S, Labarta R and Bilton A (2021) Adoption of agricultural technology in the developing world: A meta-analysis of the empirical literature. World Development 146: 105599.
- Sarker T, Roy R, Yeasmin S, et al. (2024) Enhancing women's empowerment as an effective strategy to improve food security in rural Bangladesh: a pathway to achieving SDG-2. Frontiers in Sustainable Food Systems Volume 8 2024.
- Sarma PK, Alam MJ, Begum IA, et al. (2024) Food security and women empowerment of livestock farming households in the Feed the Future zone of Bangladesh. International Journal of Social Economics 51(4): 470-484.
- Schling M and Pazos N (2024) Effective land ownership, female empowerment, and food security: Evidence from Peru. World Development 181: 106680.
- Sehat Tan S and Mailena L (2021) Empowerment of Farmers toward Corporate Implementation. E3S Web Conf. 232: 01032.
- Sekaran U, Lai L, Ussiri DAN, et al. (2021) Role of integrated crop-livestock systems in improving agriculture production and addressing food security A review. Journal of Agriculture and Food Research 5: 100190.
- Setyadiharja R, Matridi RA, Misran M, et al. (2020) Improving food security through community empowerment based on agricultural partnership in Wak Lolang Village Tanjung Pinang City. In: The International Seminar on Regional Politics, Administration and Development 2020 (INSORPAD2020), STISIPOL Raja Haji, Riau, INDONESIA.
- Shafieisabet N and Mirvahedi N (2021) The role of rural—urban linkages in perceived environmental effects of farmers for participation in sustainable food security plans. Agriculture & Food Security 10(1): 46.

- Shafieisabet N and Mirvahedi N (2022) Benefits of rural-urban interactions for sustainable food security in Iran. Human Geographies 16(1): 19-31.
- Sharaunga S, Maxwell M and Bogale A (2015) The Impact of 'Women's Empowerment in Agriculture' on Household Vulnerability to Food Insecurity in the KwaZulu-Natal Province. Forum for Development Studies 42(2): 195-223.
- Shuhaimi NA, Amna MN, Munira WJW, et al. (2025) The influence of trust and job satisfaction on structural empowerment and social work competency. Journal of Human Behavior in the Social Environment. DOI: 10.1080/10911359.2025.2457963. 1-23.
- Sibhatu KT and Qaim M (2017) Rural food security, subsistence agriculture, and seasonality. PLOS ONE 12(10): e0186406.
- Silva-Jean Md and Kneipp JM (2024) "Social learning, innovation, and sustainability: The search for directions beyond a systematic literature review". Heliyon 10(7): e28431.
- Sun X, Wang J and Rao F (2025) Land Tenure Security and Sustainable Land Investment: Evidence from National Plot-Level Data in Rural China. Land 14(1): 191.
- Ta'an Wa (2024) Medical Error Prevalence, Nursing Power, and Structural Empowerment: A Serial Mediation Analysis. The Scientific World Journal 2024(1): 1554373.
- Tamako N, Thamaga-Chitja J and Mudhara M (2022) An analysis of the effect of knowledge systems on empowerment levels and food security. South African Journal of Agricultural Extension (SAJAE) 50(1): 125-146.
- Tambi M and Lum M (2020) Effects of Social Capital on Cocoa Production in Cameroon. International Journal of Business Economics (IJBE) 2(1): 1-17.
- Tesafa F, Mulugeta M and Tsehay S (2025) Women empowerment, efficiency and food security nexus in rural Ethiopia: A generalised structural equation modelling. Heliyon 11(1): e41273.
- Thompson WJ, Varma V, Joerin J, et al. (2023) Smallholder farmer resilience to extreme weather events in a global food value chain. Climatic Change 176(11): 152.
- Touch V, Tan DKY, Cook BR, et al. (2024) Smallholder farmers' challenges and opportunities: Implications for agricultural production, environment and food security. Journal of Environmental Management 370: 122536.
- Uphoff NT (1992) Local institutions and participation for sustainable development. Reportno. Report Number|, Date. Place Published|: Institution|.
- Valentinov V and Iliopoulos C (2021) Social capital in cooperatives: an evolutionary Luhmannian perspective. Journal of Evolutionary Economics 31(4): 1317-1331.
- van den Berg J, Alblas A, Blanc PL, et al. (2022) How Structural Empowerment Boosts Organisational Resilience: A case study in the Dutch home care industry. Organisation Studies 43(9): 1425-1451.
- Viana CM, Freire D, Abrantes P, et al. (2022) Agricultural land systems importance for supporting food security and sustainable development goals: A systematic review. Science of The Total Environment 806: 150718.
- Vogliano C, Murray L, Coad J, et al. (2021) Progress towards SDG 2: Zero hunger in melanesia A state of data scoping review. Global Food Security 29: 100519.
- Walters T, Stadler R and Jepson AS (2021) Positive power: events as temporary sites of power which "empower" marginalised groups. International Journal of Contemporary Hospitality Management 33(7): 2391-2409.
- Wann T, Khongtim J and Chyne RC (2024) Assessing the impact of information literacy on farmers' decision-making processes: A mixed-methods approach. IFLA Journal 50(3): 463-478.
- Wei W, Sarker T, Roy R, et al. (2021) Women's empowerment and their experience to food security in rural Bangla-

- desh. Sociology of Health & Illness 43(4): 971-994.
- WFF YPB (2024) World Food Forum Global Youth Action Plan 2025–2026 (Version 1.0). Reportno. Report Number, Date. Place Published: Institution.
- Wonde KM, Tsehay AS and Lemma SE (2022) Training at farmers training centers and its impact on crop productivity and households' income in Ethiopia: A propensity score matching (PSM) analysis. Heliyon 8(7): e09837.
- Wu Z, Liao B, Fu Q, et al. (2025) Agricultural Machinery Adoption and Farmers' Well-Being: Evidence from Jiangxi Province. Agriculture 15(7): 738.
- Yahaya I, Pokharel KP, Alidu A-F, et al. (2018) Sustainable agricultural intensification practices and rural food security. British Food Journal 120(2): 468-482.
- Zakaria A, Azumah SB, Appiah-Twumasi M, et al. (2020) Adoption of climate-smart agricultural practices among farm households in Ghana: The role of farmer participation in training programmes. Technology in Society 63: 101338.
- Zamiri M and Esmaeili A (2024) Methods and Technologies for Supporting Knowledge Sharing within Learning Communities: A Systematic Literature Review. Administrative Sciences 14(1): 17.
- Zerafati-Shoae N, Jamshidi E, Salehi L, et al. (2020) How to increase community participation capacity in food environment policymaking: Results of a scoping review. Med J Islam Repub Iran 34: 18.
- Zikargae MH, Woldearegay AG and Skjerdal T (2022) Empowering rural society through non-formal environmental education: An empirical study of environment and forest development community projects in Ethiopia. Heliyon 8(3): e09127.
- Zscheischler J, Brunsch R, Rogga S, et al. (2022) Perceived risks and vulnerabilities of employing digitalisation and digital data in agriculture Socially robust orientations from a transdisciplinary process. Journal of Cleaner Production 358: 132034.